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Graphite-epoxy cross-ply laminates generally show multiple fracture of the transverse ply at 
higher applied stress. This phenomenon is described by means of a Monte Carlo simulation 
method based on the assumption that the strength of the transverse ply obeys a two- 
parameter Weibull distribution function. The main results show that the smaller the scatter of 
strength of the 90~ (i.e. the larger the shape parameter at a constant mean strength of the 
Weibull distribution), the higher becomes the threshold for the multiple fracture to occur, and 
the more rapidly the length of 90~ segments decreases with increasing applied stress once 
multiple fracture takes place. The methods to determine the shape and scale parameters of the 
Weibull distribution for the strength of the 90~ proposed by Manders et al. and Peters are 
proved to be useful even for a small number of test specimens. When the interfacial bond 
strength between 0 ~ and 90~ is low, saturation of 90~ cracking occurs at higher 
applied stress. The stress-carrying capacity and stiffness of the composites as a whole are 
reduced by multiple fracture of the 90~ This reduction is more pronounced at increasing 
applied stress or at a larger number of transverse cracks, especially when the interfacial bond 
strength is low. 

1. I n t r o d u c t i o n  
In graphite-epoxy laminates with a 0/90/0 stacking 
sequence, the strain at which failure in the 90~ 
occurs is generally less than that of the 0~ There- 
fore, a sample of these laminates under tension shows 
fracture of the transverse ply prior to 0~ failure. 
The breakdown of the 90~ causes a reduction of 
the bearing capacity of the composite and a redistribu- 
tion of stresses in the 90 ~ and 0~ However, as 
the 0~ has a higher load-bearing capacity than the 
90~ the loss of stress in the transverse ply as a 
result of cracking is completely compensated by the 
0~ This causes the transverse ply to fail re- 
peatedly before the specimen finally fails [1]. This 
phenomenon, known as multiple fracture, has exten- 
sively been studied by many workers [2-133. It has 
been observed not only in cross-plied polymer matrix 
composites, but also in unidirectional metal matrix 
composites [14-183. 

In cross-plied polymer matrix composites the strain 
at the occurrence of the first crack in the transverse ply 
is higher when the thickness of the 90~ is less due 
to the constraining effect. This has been explained by 
Parvizi et al. [2] in terms of a fracture mechanics 
approach employing a finite element method, The 

crack spacing (length of segments of the transverse 
ply) decreases with increasing applied stress if the 
interface does not fail and if the matrix does not yield 
[-2, 5, 7, 8, 11, 12]. The crack spacing is also affected by 
the effect of constraint. Thus, the 90~ in angle- 
(cross-) ply laminates behaves differently from the 
unidirectional laminate in transverse tension. 

Although multiple fracture of the 90~ cannot be 
predicted beforehand, it has been demonstrated by 
the analysis of experimental data that the apparent 
strength can be described by the two-parameter 
Weibull distribution function [5, 7, 12]. Manders et  al. 

[5] (the MCJR method) and Peters and co-worker 
[7, 12] (the P method) proposed simple methods to 
deduce the shape and scale parameters of Weibull 
distributions which describe the strength of the trans- 
verse ply. 

In this work, multiple fracture of the 90~ in 
02/904/02, 02/906/02 and 02/9012/02 graphite/epoxy 
laminates was simulated by means of the Monte Carlo 
method making use of several Weibull distributions. 
This Monte Carlo method has been employed pre- 
viously to describe the multiple fracture phenomenon 
of a single fibre embedded in a metal matrix [16] and 
that of a coating film on a metal wire [17]. 
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The accuracy of the determined Weibull parameters 
by the MCJR and P methods was investigated. Fur- 
ther, the influence of interfacial debonding on multiple 
fracture was investigated and the reduction in stiffness 
of a composite due to multiple fracture was deter- 
mined. 

2. Experimental procedure 
Graphite/epoxy laminates with a stacking sequence of 
02/904/02, 02/906/02 and 02/9012/02 were produced 
from Fibredux 914C prepregs. The conditions of spe- 
cimen preparation and testing were given previously 
[7, 12]. 

the 0~ Now the 0~ carries all applied load at 
x = 0. Noting the ultimate strength of the 0 ~ and 90 ~ 
plies as 0.,1 and 0"u2, respectively, the condition for 
multiple fracture to occur, based on the model of Kelly 
and Tyson [1], is approximately given by 

(0"u2/E2)(2atEi + a2E2) < ( ~ u i / E 1 ) 2 a l E  1 (3) 

3. 1.2. Equations of stress equilibrium and 
boundary conditions 

The stress distribution in the broken 90~ is affected 
by the interlaminar shear strength between 0 ~ and 
90 ~ -plies. 

3. C o m p u t e r  s i m u l a t i o n  p r o c e d u r e  
3.1. Calculation of stress distribution in a 

cracked 90~ 
3. 1.1. Model composite 
The stress distribution in the 0 ~ and 90~ with 
cracks in the 90~ were calculated by using a shear 
lag analysis. Fig. 1 shows a schematic presentation of 
a cracked specimen. The thickness of the 0 ~ and 
90~ is given by a I and a 2, respectively, as shown 
in (a), and the Young's moduli of the 0 ~ and 90~ 
by E 1 and E 2, respectively. The parameter x is the 
distance from the crack in the 90~ 

Owing to the difference in coefficient of thermal 
expansion between the 0 ~ and 90~ the residual 
strains, e,1 and er2, exist in the x direction of the 0 ~ 
and 90~ respectively. The residual strains satisfy 
Equation 1 

2a lE le r i  + azE2er2 = 0 (1) 

The mechanical stress in the composite, 0"c, at a strain 
of e before fracture of the 90~ is given by 

0"c = e (2a lE i  + a2E2)/(2ai + a2) (2) 

If the 90~ fractures at the composite stress, 0"c, the 
stress that was carried by'the 90~ is transferred to 

3.1.2.1. Strong interface. If the composite is stressed 
in tension and the 90~ remains intact, the strain of 
0 ~ and 90~ are e + erl and e + er2, respectively. 
If the 90~ fractures, additional displacements dul 
and du 2 arise in the 0 ~ and 90~ respectively. In 
this case the stresses in the 0 ~ and 90~ o l  and 
o2, respectively, are given by 

0" 1 = (e + eri + d u l / d x ) E  1 (4) 

0"2 = (e + G2 q- duz /dx )E2  (5) 

The stress equilibrium equations can be expressed by 

E i a l ( d 2 u l / d X  2) = (G/b)(u I - u2) (6) 

E2a2(d2u2/dx 2) = 2(G/b)(u2 - Ul) (7) 

where G is the shear modulus and b the thickness of 
the shear transfer layer. Reifsnider et al. [10] have 
suggested b = 0.0127mm and G = 1.378GPa for 
graphite epoxy. Peters and Chou [12] suggested that 
the shear transfer layer is a resin-rich area of twice the 
fibre diameter (b = 0.015 mm) and that G is the shear 
modulus of the matrix, G m (1.48 GPa). In the present 
work, the values suggested by Peters and Chou were 
used for the calculation. 
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Figure 1 Schematic presentation of the model for the calculation of the stress distribution in the broken transverse ply for (a) a strong 
interracial bond, and (b, c) for a weak bond. 
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For convenience, we set 

E2a2/(2Elal) = M (8) 

Gm/(Elalb ) = H (9) 

The general solutions of ua and u 2 are expressed as 

u 1 = (A1/k2)exp( - kx) + (A2/k2)exp(kx) 

+ A3x + A 4. (10) 

u2 = (1/k 2 - 1 / H ) [ A l e x p ( -  kx) + Azexp(kx)]  

+ A 3 + A s (11) 

where A~ to A s are integral constants and k is given by 

k = [H(1 + M ) / M ]  ~/2 (12) 

In order to estimate the values of A1 to A s, the 
following four boundary conditions are used. 

(i) At x = 0, ul should be zero. 

ul(0 ) -- 0 (13) 

(ii) At x = 0, the stress in the transverse ply is zero: 

E2{e + er2 + du2(O)/dx } = 0 (14) 

(iii) As the deformation behaviour of the segment of 
the 90~ with a length, L, is symmetric with respect 
to the middle at x = L/2, the additional displacements 
of the 0 ~ and 90~ are equal at x = L/2. 

Au~(L/2) = Au 2(L/2) (15) 

(iv) At any cross-section, the load is constant, being 
equal to cL(2a 1 + a2). 

(2a I + a2)cy r = 2cyla 1 + c;2a 2 (16) 

3.1.2.2. Weak interface. At x = 0, the highest shear 
stress is exerted in the shear zone between the 0 ~ and 
90~ If the shear strength, ri, is low, shear failure 
will occur when the exerted shear stress exceeds ~. 
This will take place at first at x = 0, and the debonded 
region will grow as schematically shown in Fig. lb. In 
this paper, the region where no debonding occurs and 
the region where debonding occurs are named 
Regions A and B, respectively, as shown in Fig. lc in 
which Region B covers 0 ~< x ~< d and L -  d ~< x ~< L 
and Region A d ~< x ~< L - d where 2d is the length of 
the debonded region. As the stress distribution is 
symmetrical with respect to the middle between the 
cracks at x = L/2, the shear stress between the 0 ~ and 
90~ at x = L/2 is always zero. Therefore, Region 
B cannot grow up to x = L/2: namely, in case of 
occurrence of interfacial failure, there always exists a 
Region A and a Region B. The equations of stress 
equilibrium for Region A are the same as those shown 
in Section 3.1.2.1, and u~ and u 2 in this region are 
given by Equations 10 and 11, respectively. 

Once interfacial failure has occurred (Region B), 
only frictional shear stress can exist in the shear zone. 
In this work, it is assumed that the frictional shear 
stress is low enough to be neglected. Under this as- 
sumption, the equations of stress equilibrium in 

Region B are given by 

Ela l (dZu l /dx  2) = 0 (17) 

E z a 2 ( d Z u z / d x  2) = 0 (18) 

From Equations 17 and 18, we have 

U 1 = B 1 x  + B 2 (19) 

U 2 = B 3 x  + B 4 (20) 

where B 1 to Bs are integral constants. 
In the case of the occurrence of shear zone failure, 

the unknown values are A1 to A 4, B1 to B s and d. 
These unknowns are determined with the aid of the 
following boundary conditions. In the following ex- 
pressions, superscripts A and B refer to Regions A and 
B, respectively. 

(i) At x = 0, u I should be zero. 

u~(0) = 0 (21) 

(ii) At x = 0, the stress in the 90~ is zero. 

du~(O)/dx = 0 (22) 

(iii) to (vi) At x = d, the displacement and stress 
should be continuous. 

uA(d) = u~(d) (23) 

uA(d) = u~(d) (24) 

E l [ e  + erl + duA(d)/dx] 

= El[e  + era + du~(d)/dx] (25) 

Ez[e + er2 + du~(d)/dx] 

= E2[e + er2 + du~(d)/dx] (26) 

(vii) At x = d, the shear stress in the shear zone in 
Region A is equal to % 

(Gm/b)[uA(d) - Ua(d)] = ~i (27) 

(viii) At any cross-section, the load is constant, 
being equal to (~o(2aa + a2). 

~c(2al + a 2 ) =  2a lE l [e  + G1 + du)(x) /dx]  

+ azE2[e + e~2 + du~(x)/dx] (28) 

(ix) As the deformation behaviour of the 90~ 
segment is symmetrical with respect to x = L/2, the 
displacements of the 0 ~ and 90~ are equal to 
each other at x = L/2. 

uA(L/2) = uA(L/2) (29) 

3.2. Procedure of Monte Carlo simulation 
The procedure of the Monte Carlo simulation for 
multiple fracture was nearly the same as that employ- 
ed previously [16, 171. In this paper, the procedure is 
briefly summarized. 

1. The 90~ with an initial length, Lo, was divi- 
ded into n elements with a length Le as shown in 
Fig. 2a where the centre of the first and the last 
element are located at either end of the 90~ The 
value of n was therefore equal to Lo/L e + 1. In this 
work, L c was taken to be 0.25 ram. 
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Figure 2 The transverse ply is divided into elements with a length of 
L~. (a) A schematic illustration of the definition of the elements, and 
(b) the exerted tensile stress on each element, where the j, k, I and ruth 
elements are broken already�9 

As the initial length of the composite was L 0, the 
strain ec of the composite is given by 

ec = e +  2[~=1 ~ Au2(Lq/2)/L~ 1 (32) 

6. The stress level was raised in steps of 0.1 MPa 
from zero to the fracture stress of the specimen 
roughly given by 

cYcu = ~lu 1/1 (33) 

where cylu is the ultimate tensile strength of the 0 ~ 
plies and 1/1 is the volume fraction of the 0~ 

The simulation experiment was mainly carried out 
for the 0 2 / 9 0 6 / 0 2  laminate. 

The average strength for 1 mm long segments of the 
90~ ~Y2, was taken to be 125 MPa and the values 
of w were determined based on the Weibull distribu- 
tion: cy o = 136, 131 and 123 MPa for w = 5, 10 and 20, 
respectively. The values of the parameters used in 
the present simulation for 0 2 / 9 0 6 / 0 2  w e r e  as follows: 
al = 0.25 ram, a 2 = 0.75 mm, E 1 = 128 GPa, E 2 

= 9 . 5 G P a ,  G m= 1.48GPa, b = 0 . 0 1 5 m m ,  er2 
=0.004, L o = 1 0 0 m m ,  L e = 0 . 2 5 m m  and zi 
= 200-500 MPa. 

2. The strength distribution of the 90~ was 
given by the two parameter Weibull distribution [19], 
according to which the probability of failure, F, at a 
stress, ~, is expressed as 

F = 1 - e x p [ -  1(~/~o) '~] (30) 

where w and C~o are shape and scale parameters and l 
is the length. 

3. The strength of elements was given by the Monte 
Carlo method: namely, a random value between 0 and 
1.0 was generated for each element in the computer, 
and the strength of each element S(i) was calculated 
from Equation 30 by substituting the random value 
as F. 

4. The stress distribution in 90~ was calculated 
by the method shown in Section 3.1. The stress exerted 
at the mid-point of each element was taken as the 
exerted stress on the complete element, as shown in 
Fig. 2b. When the stress ~ 2 ( i )  o n  the ith element 
exceeds the given strength S(i), the element was judged 
to be fractured and the strength of this element was set 
at 0. For  instance, when the j, k, l and ruth elements are 
broken (namely when S(j) = S(k) = S(l) = S(m) = 0), 
and the exerted stress on the k' element is higher than 
the S(k'), the k' element breaks and the S(k') is set at 0 
at this stress level. 

5. The strain of the composite as a whole was 
calculated as follows. If the 90~ is broken into p 
segments and the length of the qth segment is Lq ,  the 
displacement of the qth element at x = L relative to 
x = 0 is given by eLq + 2Auz(Lq/2 ) where Auz(Lq/2 ) is 
the displacement of the 90~ at the centre of the qth 
segments. Therefore the total displacement of the spe- 
cimen from one end to the other is given by 

P 

~" {eLq + 2Au2(Lq/2)} (31) 
q = l  

4. Results and discussion 
4.1. Stress d is t r ibut ion in the 90~ 
Fig. 3 shows the tensile stress distribution in the 90 ~ 
ply in the 02/906/02 laminate for L = 0.5-5.0 mm at 
the composite stress c~ c = 100, 300 and 500 MPa for 
(a) a strong bond (zl = 400 MPa in this case) and (b) a 
weak bond (ri = 250 MPa). 

120 . L= 2.5 mrn 5.0 / 
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Figure 3 Stress distributions in the 90~ with L = 0.5 5.0 mm in 
the 02/906/02 laminate at ~o = (1) 100, (2) 300, (3) 500 MPa for (a) a 
strong, and (b) a weak interfaciat bond. (a) No debonding, 
zi = 400 MPa; (b) debonding, x i = 250 MPa. 
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In case of a strong bond, 0-2 increases with increas- 
ing 0-~ at any x except at x = 0 for any values of L. It is 
evident that the higher tensile stress is exerted on the 
longer 90~ segments. The maximum stress of the 
segments, 0-2 . . . .  is found at x = L/2. Fig. 4a shows the 
variations of 0-2 . . . .  for a high interlaminar shear 
strength for L = 0.5 to 5.0 mm as a function of 0-r The 
cY2 . . . .  increases with increasing c~ for any values of L 
but the 0-2 . . . .  decreases with decreasing L at a given 
value of 0-c, as long as the segment length is shorter 
than double the ineffective length. This means that the 
long segments can be broken into shorter segments, 
because the longer the segments, the higher becomes 
the exerted tensile stress and therefore the higher the 
probability that the exerted stress reaches the tensile 
strength of the segments. 

On the other hand, if the bond strength is low, 
debonding occurs in the shear zone and the efficiency 
of stress transfer to the 90~ becomes low, as 
known from Fig. 3b. The 0-2 . . . .  increases with increas- 
ing 0-~ within the range where no debonding occurs 
but it decreases after debonding as shown in Fig. 4b, 
where the arrows show the stresses at which interfacial 
debonding occurs. For instance, the 0- 2 ..... for the 
segment length L = 5.0 mm increases with increasing 
o~ along AB where no debonding occurs, but it de- 
creases along BC after debonding at B. It is interesting 
that the stress in the composite at debonding is de- 
pendent on the segment length: the shorter the length, 
the higher becomes the critical stress for the debond- 
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Figure 4 Variations of er2 . . . .  as a function of ere for L = (1) 0.5, (2) 
1.0, (3) 2.5, (4) 5.0 m m  in the 02/906/0 z laminate for (a) a strong, and 
(b) a weak interfacial bond. The ar rows in (b) show the stresses at 
which debonding initiates. (a) No  debonding, high z~; (b) debonding,  
~ = 250 MPa.  

ing to occur. As a result, the stress, 0-2,max, for L 
= 0 . 5 r a m  varies along DEC where debonding 
occurs at E. 

0-2 . . . .  is essentially dependent on the interlaminar 
shear strength, q, as shown in Fig. 5. The lower q, the 
lower becomes the stress for debonding to occur. For  
instance, for z i = 200 MPa, 02 . . . .  varies along ABC, 
but for ri = 350 MPa, it varies along AHI. In this way, 
the weak shear zone results in a low efficiency of stress 
transfer to the 90~ segments, leading to no further 
fracture of the segments. Therefore, with a weak shear 
zone it is expected that the number of cracks in the 
90~ will show saturation, which will be ascertained 
by the present computer simulation. 

The growth of debonded region (Region B) is very 
rapid just after the beginning of debonding, but it 
becomes relatively slow with increasing applied stress, 
0-c, and finally the length of the debonded region, d, 
approaches L/2, as shown in Fig. 6. 
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Figure 5 Influence of the interracial bond strength, "q, on the varia- 
tion of er a . . . .  for a given value of the segment length L = 5 m m  in a 

0 2 / 9 0 6 / 0 2  laminate. Tt = (1) 200, (2) 250, (3) 300, (4) 350 MPa,  
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Figure 6 Gro wth  of length of the debonded region, d, as a function 
of o~ for "q = (1) 200, (2) 250, (3) 300, (4) 350 M P a  for a given 
segment length of L = 5 ram. The variations of %,~,a, in these cases 
are shown in Fig. 5. 
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4.2. Distribution of the length of segments 
of the 90~ 

Fig. 7 shows an example of the results of the present 
computer simulation for the process of multiple frac- 
ture of the transverse ply in the 02/906/02 laminate 
with a high interlaminar shear strength. The solid lines 
show the location of cracks in the 90~ The 90~ 
is broken into more and more segments with increas- 
ing applied stress on the composite. The long seg- 
ments tend to be broken into shorter ones with in- 
creasing applied stress, but fracture does not neces- 
sarily occur in the middle. Therefore the length of the 
segments is widely scattered in this example for w = 5. 
Fig. 8 shows an example of the distribution of lengths 
of segments for three different stress levels. At a low 
stress such as 350 MPa, the segment length varies 
strongly, but at a high stress such as 600 MPa, the 
lengths of the segments are within a relatively narrow 
range. 

The scatter in the length of segments depends on the 
value of w. The smaller the value of w, the larger is the 
scatter, as typically shown in Fig. 9 where the average 
length of segments, s is nearly the same for both 
values of w = 5 and 20. This result can be explained by 
the fact that, when the scatter of strength of a 90~ 
is small, namely when the strength of each element 
shown in Fig. 2 is not very different from each other, 
the middle of the segments, on which the highest stress 
is exerted, tends to be broken. 

I 

I 
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I 

i 

BOO 400 200 500 

q 

600 MPa 

Figure 7 An example of multiple fracture in the 90~ of the 
02/906/02 laminate at various stress levels, obtained by the com- 
puter simulation for the Weibull distribution with w = 5 and 
% = 1 3 6 M P a .  " 

high applied stress and further cracking will occur 
rather rapidly due to a small difference in strength of 
the elements. 

4.3. Influence of scatter of the strength of the 
90~ on multiple fracture 

Fig. 10 shows some examples of the number of frac- 
tures, Ne, of the 90~ as a function ~c. If the 
strength of the transverse ply has a large scatter 
(w = 5), first cracking occurs at a low applied stress 
and further cracking occurs rather gradually due to 
the large difference in strength of the elements. On the 
other hand, if the strength of the 90~ shows small 
scatter (large w), first cracking will occur at a relatively 

15 

4.4. Evaluation of the Weibull parameters from 
experimental data 

As the fracture behaviour of a transverse ply in lamin- 
ates is affected by the constraining effect as stated 
before, the fracture behaviour cannot be predicted 
from the transverse test of the unidirectional laminate 
only. Manders et al. [5] (the MCJR method) and 
Peters and co-worker [7, 12] (the P method) presented 
simple models to evaluate Weibull parameters of a 
90~ in laminates from experimental results. These 

10 

a 

0 7 1/, 0 7 14 0 7 14 
L (rnm) 

Figure 8 Distribution of the length of segments of the 90~ in a 02 /906 /02  laminate at (a) ~c = 350, (b) 450  a n d  (c) 600 M P a .  w = 5, 
% = 136 M P a .  

5438 



" * "10 

0 
Ihi,, , . . , ,  

/, 

( a )  

, ,  ILl  , , ,  
0 k 

L {mm) 

(b) 

Figure 9 Comparison of the distribution of the length of segments 
of the 90~ in the 02/906/02 laminate, (a) for w = 5, s = 2.0 ram, 
with that of (b) for w = 20,/2 = 1.9 ram, at ~o = 550 MPa. 
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Figure 10 Influence of the scatter of strength of the transversy ply in 
the 02/906/02 laminate on the number of cracks, Nf. 

two methods  are convenient  for practical aim. How-  
ever, generally, the experimental da ta  show large scat- 
ter, which makes it difficult to determine the Weibull 
parameters  f r o m  a small number  of tests. On  this 
point, the validity of these methods have not  been 
checked until now. In this work, fracture data  are 
generated by the simulation experiment, making use 
of a certain Weibull distribution, and from these gen- 
erated data the Weibull parameters  applying the 
MCJR-  and P-methods  are determined. The thus de- 
termined Weibull parameters  are compared  with the 
original parameters.  

4.4. 1. MCJR model [5 ]  
The cracks appear  at the weakest cross-section of the 
90~ with a certain distribution along the length 
which depends on the applied strain. If it is assumed 
that  the strengths of  successive sections are independ- 
ent and identically distributed, this will be a Poisson 
process. Applying the concept  of risk of  rupture, the 
cumulative distribution function of strength, S, for a 
length, L, under a given cross-sectional area of  the 90 ~ 

ply is given by 

S = 1 - exp[  - ~ (cy)dx]  (34) 

where ~ ( ~ )  is the risk of  rupture per unit length. When 
the cracks are widely spread, the integral in Equat ion  
34 may  be approximated,  as below, by assuming a 
constant  level of stress between cracks. Taking logar- 
i thmus gives 

ln(t -- S) = -- ~L (35) 

where g is given by 

= (o2/C~o) w (36) 

assuming a two-parameter  Weibull distribution. 
Taking logari thms of Equat ion  36 leads to 

ln(~t) = wln(cy2) - win(c%) (37) 

The values of g and (J 2 can be determined experi- 
mentally. F r o m  the plot In(g) versus ln(cY2) , w and cy o 
can be estimated. 

The generated fracture data, which show large scat- 
ter in each specimen (run), are collected after the 
number  of segments exceeded 500 at each stress level. 
Then, the M C J R  method was evaluated first by these 
collected data. Figs t l  and 12 show the plots of 

- ln(1 - S) versus L for w = 5 and 20, respectively. If 
the fracture process is described by Equat ion  35, the 
graph of - ln(1 - S) against L should be linear with a 
slope g and should pass through the origin. However,  
the curves in Figs 11 and 12 are not  perfectly linear, 
nor  do they pass through the origin. They are more  
linear at larger crack spacing, L. When  straight lines 
are fitted to the linear port ions of these curves, the 
intercept represents the distance at either side of a 
crack in which the probabil i ty of  another  crack to 
form is effectively zero. The M C J R  model  uses the 
straight por t ion for the evaluation of w and cy 0. 
F r o m  the slope g in Figs 11 and 12 and the stress 
0"2(  ----- E 2 ( e  9- ere)) at each stress level, cy o can be ob- 
tained, from Fig. 13 where ln(la) is plotted against 
ln(o2). The slope corresponds to w and the value of 
ln(o2) at In(g) = 0 corresponds to .ln(oo). The values 
w = 5.1 and o o = 132.0 M P a  were determined from 

'[~7-#I ~ 7 ,'/~ 
I ! ? /  o'~ ~ , 

, Looo//i/,,o/-,oo/._,,o ./-_ 
I 2 i /  .: / ..." ..,' .... 

I f/l~/ , ../ : I J / ! . / /  / .y. ,oo 

= I E , ! . ; ' /  i . . " "  -.< . . . .  

I I /D; , ' ; / - I"  . - - -  J 

0 5 10 15 20 
L (ram) 

Figure 11 - ln(1 - S) plotted against L for the collected data for 
w = 5 and o o = 136 MPa at various applied stresses (laminate 
02/906/02). 

5439  



3 

2 

c 
7" 

1 

., ,, /;,/ 
! . / 

600 0 t .L525 / 475--r 
Ji; / / / 
I~ .L~t55o , /  ,." / / / / / /  

-i/// / ! / /  ..,i 
17:// 

; 1'o 2o 
L (mm) 

Figure 12 - ln(1 - S) plotted against L for the collected data for 
w = 20 and cYo = 128 MPa at various applied stresses (laminate 
02/906/02). 
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Figure 13 ln(p) plotted against ln(o2) for the 02/906/02 laminate 
with w = 5 (G0 = 136 MPa) and w = 20 (c~ 0 = 128 MPa) based on 
the MCJR [5] method for the simulated data. 

Fig. 13, as shown in Table  I. Compar ing  these values 

with w -- 5 and  cy o = 136 M P a  which are the original 
Weibul l  parameters  for the s imula t ion  experiment,  the 

agreement  is quite good. Also, for Weibul l  parameters  

w = 20 and  c~ o = 129 MPa ,  the values of w and  ~o 
were determined to be 18.9 and 127 MPa ,  respectively, 
showing good agreement.  

The results shown above indicate that  the M C J R  
method  is a good method  to determine the Weibul l  
parameters,  if a sufficient n u m b e r  of segments can be 
ob ta ined  experimentally.  However,  in general, the 
n u m b e r  of test specimens is no t  large. Fo r  such a case, 
the experimental  results will show scatter, which may 

lead to inaccuracies. This point  will be discussed 
below. 

Fig. 14 shows an example of the graph with 
- ln(1 - S) as a funct ion of the segment length L for 

one specimen (one run). The l ineari ty is no t  good at 
each stress level. Fur thermore ,  the data  - ln(1 - S) 
against  L is different from specimen to specimen, as 

5 4 4 0  

T A B L E I Comparison of the values of the Weibull parameters w 
and % determined from the generated data of the simulation 
experiment (Fig. 13) applying the MCJR method [5] with the 
original input parameters of the simulation experiment (02/906/02 
laminate) 

w w c~ 0 (MPa) 

5 Input 5.00 136 
Calculated 5.10 132 

20 Input 20.0 128 
Calculated 18.9 127 

q /  ' ' 5OO 
4 60 i 

i [  400-- 350 z,50 

l OMPQ - 

c 
T 

I 

L (ram) 

Figure 14 An example of - ln(1 - S) plotted against L for one 
specimen (run) of the 02/906/02 laminate with w = 5 and 
cy 0 = 136 MPa. 
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Figure 15 -- ln(1 -- S) plotted against L at Gc = 300 and 500 MPa 
for five 02/906/02 specimens (runs) with w = 5 and % = 136 MPa 
showing a large scatter from specimen to specimen. 

typically shown in Fig. 15 where the results for five 
specimens are plotted. Although,  strict l inearity is no t  
found in Fig. 14, the data  for each specimen approach 
a l inear relat ionship in a first approximat ion.  The 
straight lines in Fig. 14 are fitted by the least square 
method  for L > 1.5 m m  in order to ob ta in  the values 
of p, because the relat ion of - ln(1 - S) to L is not  
l inear  in the range for L < 1.5 m m  in Figs 11 and  12. 
The obta ined  values of g are plotted against  c~ 2 on a 



In In scale, as shown in Fig. 16, where the results of 
five specimens for w = 5 and 20 are presented. 

Although In(g) is not necessarily a linear function of 
In(e2) in the respective specimens, w and cy 0 are 
determined again by using the least square method. 
The result is shown in Table II. It is surprising that the 
determined values of w and (% for each specimen are 
not so much different from the original Weibull para- 
meters of w = 5 and o o = 136 MPa and w = 20 and 
(~o = 128 MPa. If the results for the five specimens are 
averaged, the average values of w and Oo agree well 
with the original input values. These results indicate 
that with the MCJR method the Weibull parameters 
can be obtained with fairly high accuracy even if the 
number of specimens is small. 

4.4.2. The P method [Z  12_7 
According to the calculation shown in Section 4.1, the 
stress in the 90~ is low close to existing cracks, so 
that new crack formation close to existing cracks is 
suppressed. This results in a certain crack spacing 
which is influenced, for example, by the strength dis- 
tribution of the 90~ and the non-homogeneous 
stress distribution around cracks. Peters and co- 
worker [7, 12] considered that the 90~ consists of 
a chain of elements with a critical length, l,, which is 
chosen such that the elements probably break only 

0 

"::t. 
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4.3 

I I 

I 
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I 
4.9 

Figure 16 In(p) plotted against ln((Y2) for five 02/906/02 specimens 
for ( �9 ) w = 5 ((% = 136 MPa), together with those for ( �9  w = 20 
(% = 128 MPa). 

TAB L E I I The values of the Weibull parameters w and o 0 for five 
specimens indicated in Fig. 16 calculated with the MCJR method 
[5] in comparison with the original input parameters of the simu- 
lation experiment for the 02/906/02 laminate 

w w o" o (MPa) 

5 Calculated for 5.03 127 
each specimen 4.68 133 

4.89 126 
4.58 135 
4.99 137 

Average 4.83 132 

Original input 5.00 136 

20 Calculated for 18.2 126 
each specimen 17.7 124 

17.6 125 
15.4 126 
22.5 124 

Average 18.2 125 

Original input 20.0 128 

once. They chose somewhat arbitrarily the element 
length, lo, to be twice the length in which 90% of the 
undisturbed stress is introduced in the 90~ In case 
of the 02/906/02 laminate, the element length, lc, meas- 
ures 0.83 mm [7]. 

According to the P method, the stress in the 90~ 
is approximated to be zero for txl < Ic/2 and to be 
equal to the undisturbed stress ( =  Ez(e + er2)) for 
Ix I >  l~/2. This simplification can lead to inaccuracy. 
At low loads with only a small number of element 
failures, the inaccuracy of the model is negligible. At 
high loads, more and more elements show an inhomo- 
geneous stress distribution because of broken neigh- 
bours. Furthermore, a broken element can break 
again at high applied stress, Thus this model should be 
applied to the results at lower stress levels (see Fig. 17). 

Equation 30 for l = lc and cr = (~2 can be written as 

lnln(1 - F) -1 = wln((%2) - wln(l~/W/c%) (38) 

The probability of failure, F, is calculated making 
use of 

F = j / (N + 1) (39) 

where j represents the fracture order number and N 
the number of elements ( = Lo/lc). Substituting experi- 
mental values of F and o2( = E2(e + er2)) into Equa- 
tion 38, and plotting lnln(1 - F ) -  1 against ln(cY2) , one 
can determine the values of w and oo/(I l/w) from the 
slope and the values of o 2 at lnln(1 - F ) -  1 = 0. 

Fig. 17 shows the plots of lnln(1 - F )  -1 against 
ln((~2). The data points in this figure are given by the 
average of 30 specimens (30 runs). The value of 
lnln(1 - F ) -  1 increases linearly with increasing value 
of ln(cyo) in the range lnln(1 - F) -~ < - 1.25, but 
above this value it deviates from linearity due to the 
reason stated already. The linearity between lnln 
(1 - F) -~ and ln(~/)  for relatively low values of F 
makes it possible to determine the values of Weibull 
parameters. The thus calculated values of w and cy~ are 
summarized in Table III. Good  agreement between 
the original input and the determined values suggests 
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Figure 17 The probability of failure, lnln(1 - F)-1,  plotted against 
ln(o2) for the 02/906/02 laminate with w = 5 (o 0 = 136 MPa) and 
w = 2 0  (or o =  128MPa) based on the P method [7, 12] for an 
average of 30 specimens (runs). 

T A B L E  II I  The mean values of the Weibull parameters w and ~o 
calculated from the generated data (in Fig. 17) for 30 specimens 
(runs) by the P method [7, 12] compared with the original input 
parameters of the simulation experiment for the 02/906/02 laminate 

w w cr o (MPa) 

5 Input 4.90 138 
Calculated 5.00 136 

20 Input 18.8 128 
Calculated 20.0 i28 

that the P method is also a good method if the number 
of test specimens is large. 

Again, the applicability of this method to a small 
number  of tests is examined. Fig. 18 shows examples of 
the plot of lnln(1 - F ) -  1 against ln(cy2) for five speci- 
mens. Although linearity is not very good, the values 
of w and o o are determined by the least squares 
method, as shown in Table IV. There is some scatter, 
but the determined values are in good agreement with 
the original input values, suggesting that the P method 
is also applicable even for a small number of tests. 

The P method has the advantage that the distribu- 
tion of length of segments is not needed to determine 
the parameters and only the data on number  of cracks 
(or average length) as a function of applied stress make 
it possible to determine the Weibull parameters. 

The P method has been applied to the experimental 
results published previously [7, 12]. The determined 
values are w = 10.47 and cy o = 158 M P a  for the 
01 /90 , , /02  laminate, w =  7.55 and Go = 145 MPa  
for the 02 /906 /02  laminate, and w = 6 . 4 1  and 
o o = 131 M P a  for the 02 /9012 /02  laminate. The re- 
sidual strains, er2 , have been measured as 0.448%, 
0.433% and 0.394% for the 02/904. /02,  02 /906 /02  and 
02 /9012 /02  laminates, respectively [7]. These values 
are the input parameters  in the simulation procedure 
and it is examined whether the multiple fracture data 
can be reproduced by the simulation procedure. 
Fig. 19 shows the results with the hatched regions for 
the experimental data [7] for four specimens. The 
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Figure 18 The probability of failure, lnln(1 - F)-1,  plotted against 
ln(~-2) for five 02 /906 /02  specimens (runs) for the cases of w = 5 
(or 0 = 136 MPa) and w = 20 (or o = 128 MPa). 

T A B L E  IV The values of the Weibull parameters w and r for 
five specimens indicated in Fig. 18 calculated by the P method 
[7, 12] compared with the original input parameters of the simu- 
lation experiment for the 02/906/02 laminate 

w w cy o (MPa) 

5 Calculated for 4.47 141 
each specimen 4.90 145 

4.97 138 
6.08 139 
5.16 139 

Average 5.14 136 

Original input 5.00 136 

20 Calculated for 19.0 127 
each specimen 15.6 131 

16.4 130 
18.6 127 
20.6 129 

Average 18.0 129 

Original input 20.0 128 
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Figure 19 The relation between the number of cracks, Nf, and the 
applied stress, o c, for the different cross-ply laminates as a result of 
the present computer simulation in comparison with the original 
data [7] shown by the hatched regions. The Weibull parameters w 
and cr 0 in the computer simulation experiment were taken from [7]. 
L 0 = 115 mm. 



experimental results are well reproduced, indicating 
again that the P method is useful to estimate the 
Weibull parameters. 

4.5. The influence of the interlaminar 
shear strength on multiple fracture of 
the transverse ply 

As shown in Section 4.1, the stress-carrying capacity of 
segments decreases quickly once interfacial debonding 
takes place. This means that the segments cannot 
be broken further once debonding occurs. Fig. 20 
shows some examples of the results of the computer 
simulation representing the influence of interlaminar 
shear strength. It is obvious that fracture of the 90~ 
shows saturation at high applied stresses when the 
shear strength, q, is low or when the number of 
transverse plies is large [12]. Another feature is that 
the lower the shear strength ~, the smaller becomes 
the number of cracks and the lower becomes the stress 
for saturation of transverse cracking. 

The reduction in multiple fracture rate at high 
applied stress has been reported by Manders et al. [5] 
for a glass/epoxy laminate and by Garrett and Bailey 
[11] for a glass/polyester laminate. These results can 
be attributed to the plastic shear deformation of the 
matrix or interlaminar failure in the shear zone, which 
reduces the efficiency of stress transfer to the 90~ 
[12]. The present simulation demonstrates that the 
weak interface reduces the fracture rate at high ap- 
plied stress, leading to a saturation of cracking. 

4.6. Reduction in stress-carrying capacity 
due to multiple fracture 

The stress-strain relations and the reduction in stiff- 
ness due to multiple fracture in the transverse ply have 
been studied by many researchers [9, 20, 21]. It has 
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200 400 600 
cr c (MPo) 

Figure 20 Influence of the interfacial bond strength on the number  
of cracks of the 90 ~ ply, Nr, for the 0 j 906 / 0  z laminate with w = 5 
( %  - 136 MPa). L o = 100 ram; ,r~ = (1) 250, (2) 300), (3) 350, (4) 
500 MPa. 

been demonstrated that multiple fracture leads to a 
reduction in stress-carrying capacity and in stiffness. 
In this section it is shown, how the stress-carrying 
capacity is reduced. 

The stress-carrying capacity is expressed by the 
ratio cyo/~o, 0, in which cyc is the stress in the composite 
in the damaged state (with transverse cracks) and cyc, o 
is the stress in the undamaged state at a certain strain. 
Fig. 21a shows some examples of the reduction in 
stress. The reduction in stress-carrying capacity in- 
creases with increasing applied stress, with the number 
of transverse cracks and with decreasing interlaminar 
shear strength. For a large interlaminar shear strength 
and a large scatter of the transverse strength (w = 5, 
case 1), multiple fracture starts at low applied stress 
but it progresses gradually due to the difference in the 
strength of the elements. Thus the reduction in stress- 
carrying capacity starts at relatively low applied stress 
and the reduction rate increases gradually. On the 
other hand, when the scatter is small (w = 20, case 3), 
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Figure 21 (a) The reduction in stress-carrying capacity due to mul- 
tiple fracture of the 90~ in the 02/906/02 laminate with (1, 2) 
w = 5  and (3) w = 2 0  (cy o = 1 3 6 M P a ) ,  r i = ( 1 )  500, (2) 350, 
(3) 500 MPa. (b) Reduction in stress-carrying capacity, as shown by 
the stress-strain curve. 
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multiple fracture does not occur up to a relatively high 
applied stress but it progresses quickly once it starts. 
Now the reduction in stress-carrying capacity does 
only occur at a relatively high stress level but once it 
occurs, it increases quickly with increasing applied 
stress. 

For a weak interlaminar shear strength, once inter- 
facial debonding occurs, the reduction becomes very 
large. In this case, the reduction is clearly observed in 
the stress-strain curve shown in Fig. 21 (case 2) indi- 
cating that the contribution of the stress carried by the 
90~ is very low. In the case where the stress- 
carrying capacity of the 90~ is almost completely 
lost due to debonding, the applied stress is carried 
only by the 0~ on the whole specimen length. 
Therefore, the Young's modulus of the specimen as a 
whole is given by E 1 V1. In the present example for the 
02/906/02 laminate, the stress-carrying capacity is 
E 1 V 1 / ( E  1 V 1 4- E 2 172) w h e r e  V2, t h e  v o l u m e  f r a c t i o n  

of 90~ is 60%. 

5. C o n c l u s i o n s  
Multiple fracture of the transverse ply in cross-plied 
graphite-epoxy laminates was studied by means of a 
Monte Carlo simulation. The present work demon- 
strated that the smaller the scatter of strength of the 
90~ the higher becomes the threshold stress for 
multiple fracture to occur, and the more rapidly the 
length of segments decreases with increasing applied 
stress once multiple fracture takes place. Further, it 
was shown that if the interlaminar shear strength 
between 0 ~ and 90~ is low, a saturation of trans- 
verse cracking occurs and that the reduction in effec- 
tive stiffness or the reduction in stress-carrying capa- 
city of the laminate increases with increasing applied 
stress or with number of cracks, especially when the 
interlaminar shear strength is low. Furthermore, it 
was proved that the methods to determine scale and 
shape parameters of the Weibull distribution for the 
strength of the 90~ as proposed by Manders et  al. 
and Peters, are useful even for a small number of test 
specimens. 
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